Asymmetric Synthesis of *anti*-1,2-Amino Alcohols via the Borono-Mannich Reaction: A Formal Synthesis of (-)-Swainsonine

Christopher W. G. Au and Stephen G. Pyne*

Department of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia

spyne@uow.edu.au

Received May 24, 2006

Chiral α -hydroxy aldehydes generated in situ by the ADH reaction of vinyl sulfones undergo a borono-Mannich reaction with β -styrenyl boronic acid and primary amines to give *anti*-1,2-amino alcohols in high enantiomeric purities (83–95% ee). This new method allows much more rapid access to these valuable chiral building blocks that has been used in a short formal synthesis (10 synthetic steps from 4-penten-1-ol) of (–)-swainsonine.

In 1998, Petasis reported the synthesis of anti-1,2-amino alcohols from a borono-Mannich reaction of aryl or vinyl boronic acids, with primary or secondary amines and chiral α -hydroxy aldehydes.¹ The latter were generally derived from carbohydrates which limited the generality of this reaction because enantiomerically enriched chiral α -hydroxy aldehydes were not generally available. A more recent paper by Evans,² however, showed that these valuable substrates could be prepared in situ from the Sharpless asymmetric dihydroxylation (ADH) reaction of vinyl sulfones (Scheme 1). We report here that chiral α -hydroxy aldehydes generated in situ by this method undergo the borono-Mannich reaction with β -styrenyl boronic acid and primary amines to give anti-1,2-amino alcohols in high enantiomeric purities. This new method allows much more rapid access to these valuable chiral building blocks. More specifically, the derived anti-1,2-amino alcohol diene products, obtained using allylamine, are valuable precursors for alkaloid synthesis,³ as further demonstrated here by a short, formal synthesis of the important natural product (-)-swainsonine.⁴

SCHEME 1

SCHEME 2

The (E)-vinyl sulfones **1a**,**b** were readily prepared from their corresponding terminal alkenes either via cross metathesis with phenyl vinyl sulfone $(E:Z = >99: <1)^5$ (Scheme 1) or by iodosulfonation followed by elimination of HI (E:Z = 98:2; see Supporting Information).⁶ Treatment of vinyl sulfone 1a with either ADmix_{α} or ADmix_{β}, under the conditions described by Evans,² gave, after extraction into EtOAc and evaporation, material that showed no characteristic downfield aldehvde ¹H NMR resonances, more consistent with a mixture of acetal-like structures. This material was then treated with β -styrenyl boronic acid (1.00 molar equiv relative to 1a) and allylamine (1.06 molar equiv relative to 1a) in CH₂Cl₂ (DCM) at room temperature for 40 h to give the *anti*-1,2-amino alcohol dienes 2a ($R^2 =$ allyl) and **3a** ($R^2 = allyl$), respectively (Scheme 2 and Table 1, entries 1 and 2). These compounds were isolated as single diastereomers in 44 and 51% overall yields for the two-step sequence, respectively, from 1a. The isomeric syn-1,2-amino alcohol dienes could not be detected. The enantiomeric purities

⁽¹⁾ Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1998, 120, 11798– 11799.

⁽²⁾ Evans, P.; Leffray, M. Tetrahedron 2003, 59, 7973-7981.

^{(3) (}a) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.; Tang, M. *Synlett* **2004**, 2670–2680. (b) Davis, A. S.; Pyne, S. G.; Skelton, B. W.; White, A. H. *J. Org. Chem.* **2004**, *69*, 3139–3143. (c) Lindsay, K. B.; Pyne, S. G. *Aust. J. Chem.* **2004**, *57*, 669–672. (d) Tang, M.; Pyne, S. G. *Tetrahedron* **2004**, *60*, 5759–5767. (e) Tang, M.; Pyne, S. G. *J. Org. Chem.* **2003**, *68*, 7818–7828. (f) Lindsay, K. B.; Tang, M.; Pyne, S. G. *Synlett* **2002**, 731–734. (g) Lindsay, K. B.; Pyne, S. G. *J. Org. Chem.* **2002**, *67*, 7774–7780.

⁽⁴⁾ For reviews, see: (a) Nemr, A. E. *Tetrahedron* **2000**, *56*, 8579–8629. (b) Pyne, S. G. *Curr. Org. Synth.* **2005**, *2*, 39–57. (c) For a recent synthesis, see: Guo, H.; O'Doherty, G. A. *Org. Lett.* **2006**, *8*, 1609–1612.

^{(5) (}a) Gela, K.; Bieniek, M. *Tetrahedron Lett.* 2001, 42, 6425–6428.
(b) Michrowska, A.; Bieniek, M.; Kim, M.; Klajn, R.; Grela, K. *Tetrahedron* 2003, 59, 4525–4531.

^{(6) (}a) Nair, V.; Augustine, A.; Suja, T. D. *Synthesis* **2002**, *15*, 2559–2265. (b) Rasset-Delong, C.; Martinez-Fresneda, P.; Vaultier, M. Bull. Chim. Fr. **1992**, *129*, 285–290.

TABLE 1. Synthesis of 2 and 3 (Scheme 2)

entry	vinyl sulfone	AD mix	amine R ²	overall yield (%) from 1^a	ee (%) ^b
1	1 a	α	allyl	44	91
2	1a	β	allyl	51	94
3	1a	ά	PMB	46	91
4	1a	β	PMB	43	95
5	1b	α	allyl	35	83
6	1b	β	allyl	38	93
a v .	1 62 2	с. : с:		1 / 1	hD (

^{*a*} Yield of **2** or **3** after purification by column chromatography. ^{*b*} Determined by ¹⁹F NMR spectroscopy on the corresponding Mosher ester.

of these products were high, 91 and 94%, respectively, as determined by ¹⁹F NMR spectroscopic analysis of their corresponding Mosher esters (see Supporting Information). When these reactions were repeated using 4-methoxybenzylamine (PMBNH₂), the *anti*-1,2-amino alcohol dienes **2a** ($R^2 = PMB$) and **3a** ($R^2 = PMB$) were isolated as single diastereomers in 46 and 43% overall yields and had enantiomeric purities of 91 and 95%, respectively (Scheme 2 and Table 1, entries 3 and 4).

When this sequence of reactions was performed starting with vinyl sulfone **1a** and using the secondary amine, morpholine, and the aromatic amine, 4-methoxyaniline (PMPNH₂), the overall yields were disappointing. The morpholine-derived *anti*-1,2-amino alcohol product was obtained as a single diastereomer in only 12% yield (ee not determined), while none of the adduct **2a** ($R^2 = PMP$) could be isolated.

Treatment of the TBDPS-protected vinyl sulfone **1b** with either ADmix_{α} or ADmix_{β} followed by treatment of the crude oxidation product with β -styrenyl boronic acid and allylamine gave the *anti*-1,2-amino alcohol dienes **2b** (R² = allyl) and **3b** (R² = allyl), respectively (Scheme 2 and Table 1, entries 5 and 6) in overall yields of 35 and 38%, respectively, for the twostep sequence. The enantiomeric purities of these products, however, were significantly different, with enantiomeric excesses determined as 83 and 93%, respectively.

While, in general, the overall yields of **2** and **3** were only modest, the overall brevity of their synthesis (total of three steps) compares more than favorably with previously published methods for these *anti*-1,2-amino alcohol dienes ($\mathbb{R}^2 = \text{allyl}$) that involve the ring opening of vinyl epoxides with allylamine, where the former substrates requires six synthetic steps from commercially available starting materials.^{3a,7,8} Furthermore, these yields are based on 1.0 equiv of **1** and 1.0 equiv of β -styrenyl boronic acid.⁹ These modest yields most likely reflect the instability of the α -hydroxy aldehyde or their acetal-like intermediates; however, the high enantiomeric excesses of the product 1,2-amino alcohols indicate that racemization of these intermediates is not a major problem.

To verify the relative stereochemistry of 3a ($R^2 = allyl$), it was converted to the oxazolidinone 4 (Scheme 3) by treatment with triphosgene under basic conditions. The 9.3 Hz vicinal

SCHEME 3

SCHEME 4

SCHEME 5^a

 a Reagents and conditions: (a) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 2.5 h, 70%; (b) KOH, MeOH, reflux, 7 h, 60%; (c) Ph₃P, CBr₄, Et₃N, CH₂Cl₂, 0 °C, 2 h, 71%; (d) Ti(O*i*-Pr)₄, Grubbs II catalyst, CH₂Cl₂, reflux, 2.5 h, 80%.

coupling constant, $J_{4,5}$, in the ¹H NMR spectrum of **4** was consistent with the 4,5-*cis* relative stereochemistry.^{3g,7}

While the exact mechanism of the borono-Mannich reaction is not known, we speculate that these reactions occur via the boronate complex intermediate A (Scheme 4), in which the iminium ion adopts the reactive conformation shown to minimize 1,3-allylic strain.

To demonstrate the utility of these substrates further, the *anti*-1,2-amino alcohol diene **3b** (\mathbb{R}^2 = allyl) was converted in four steps to the known indolizidine **8**^{10,11} as shown in Scheme 5. Protection of the secondary hydroxyl of **3b** (\mathbb{R}^2 = allyl) as its TBS ether and then deprotection of the primary TBDPS ether under basic conditions¹¹ gave the amino alcohol **6**. Cyclization of this compound by intramolecular N-alkylation (Ph₃P, CBr₄, Et₃N)^{3g,13} gave the piperidine derivative **7** in 71% yield (Scheme 3). The ring-closing metathesis of **7**, employing Ti(O*i*-Pr)₄ as a

^{(7) (}a)Lindstrom, U. M.; Franckowiak, R.; Pinault, N.; Somfai, P. *Tetrahedron Lett.* **1997**, *38*, 2027–2030. (b) Lindstrom, U. M.; Somfai, P. Synthesis **1998**, 109–117.

⁽⁸⁾ An alternative and direct synthesis of *anti*-1,2-amino alcohols, from the addition of chiral imino-allylboranes to aldehydes, has also been reported. These products, in principle, could also be converted to similar *anti*-1,2-amino alcohol dienes. See: Barrett, A. G. M.; Seefeld, M. A.; Williams, D. J. *J. Chem. Soc., Chem. Commun.* **1994**, 1053–1054.

⁽⁹⁾ Often organo-catalyzed Mannich reactions require an excess amount of the aldehyde or ketone donor. See: Seayad, J.; List, B. *Org. Biomol. Chem.* **2005**, *3*, 719–724 and references cited therein.

⁽¹⁰⁾ Buschmann, N.; Rückert, A.; Blechert, S. J. Org. Chem. 2002, 67, 4325–4329.

⁽¹¹⁾ Mukai, C.; Sugimoto, Y.-i.; Miyazawa, K.; Yamaguchi, S.; Hanaoka, M. J. Org. Chem. **1998**, 63, 6281–6287.

⁽¹²⁾ Hatakeyama, S.; Irie, H.; Shintani, T.; Noguchi, Y.; Yamada, H.; Nishizawa, M. *Tetrahedron* **1994**, *50*, 13369–13376.

Lewis acid to protect the amino group in situ by complexation,¹⁴ provided the silica gel sensitive indolizidine **8** ($[\alpha]^{26}_{\rm D} - 72^{\circ}$, *c* 0.65, benzene) in 80% yield after purification on basic alumina. This compound has been prepared previously in >99% ee ($[\alpha]^{20}_{\rm D} -91.73^{\circ}$, *c* 0.955, benzene)^{10,15} and in racemic form and converted to (–)-⁹ and (±)-swainsonine,¹² respectively. Thus our synthesis of **8** represents a formal asymmetric synthesis of (–)-swainsonine **9** in 10 steps from commercially available 4-penten-1-ol. This number of steps compares more than favorably with earlier syntheses of **9** that typically involve 10 or more steps.⁴

In conclusion, chiral α -hydroxy aldehydes generated in situ by the ADH reaction of vinyl sulfones undergo the borono-Mannich reaction with β -styrenyl boronic acid and primary amines to give *anti*-1,2-amino alcohols in high enantiomeric purities (83–95%). This new method allows a much more rapid access to these valuable chiral building blocks that have been used in a formal synthesis of (–)-swainsonine in 10 synthetic steps.

Experimental Section

((*E*)-5-(Phenylsulfonyl)pent-4-enyloxy)(*tert*-butyl)diphenylsilane (1b). To an argon-flushed 50 mL round-bottom flask containing phenyl vinyl sulfone (0.204 g, 1.213 mmol) were added *tert*-butyl(pent-4-enyloxy)diphenylsilane (0.202 g, 0.622 mmol) and distilled CH₂Cl₂ (15 mL). The content of the round-bottom flask was then transferred via syringe to a argon-flushed 100 mL twoneck round-bottom flask containing a solution of Grubbs II catalyst (0.028 g, 0.033 mmol, 5.33 mol %) in CH₂Cl₂ (5 mL). The reaction mixture was stirred under argon and heated at reflux for 18 h and then concentrated in vacuo to give a brown oil. Flash column chromatography (increasing polarity from 1:10:2 to 1:5:2 Et₂O: pet. sp.:CH₂Cl₂ as eluent) gave the title compound (0.263 g, 0.565 mmol, 90.8%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.90–7.35 (15H, m), 7.00 (1H, dt, *J* = 6.3, 15.0 Hz), 6.30 (1H, d, *J* = 15.1 Hz), 3.65 (2H, t, *J* = 6.3 Hz), 2.36 (2H, q, *J* = 7.8 Hz),

(15) We attribute the difference in the specific rotation of 8 and the literature value¹⁰ to the relative small scale of our reactions and the sensitive nature of the product.

1.69 (2H, quint., J = 6.8 Hz), 1.03 (9H, s). ¹³C NMR (CDCl₃, 125 MHz): δ 146.7, 140.6, 135.4, 133.5, 133.1, 129.6, 129.5, 129.1, 127.6, 127.5, 62.5, 30.3, 27.9, 26.8, 19.1. MS (ES+) m/z 465 ([M + 1]⁺), HRMS found 465.1916, calcd for C₂₇H₃₃O₃SSi 465.1920 ([M + 1]⁺).

(3S,4R,E)-3-(Allylamino)-7-(tert-butyldiphenylsilyloxy)-1-phenvlhept-1-en-4-ol (3b). To a round-bottom flask containing an solution of AD-mix- β (5.3 g) and MeSO₂NH₂ (0.16 g, 1.68 mmol) in water (9 mL) was added a solution of vinyl sulfone 1b (0.406 g, 0.874 mmol) in *t*-BuOH (9 mL). Additional AD-mix- β (1.6 g) and MeSO₂NH₂ (0.040 g, 0.420 mmol) were added after 6 h, and the reaction mixture was stirred at room temperature for a total of 24 h and then diluted with water, followed by extraction with EtOAc $(3 \times 20 \text{ mL})$. The combined organic layers were dried (MgSO₄) and concentrated in vacuo to afford a brown oil. A solution of the crude product in dry DCM (5 mL) was purged with nitrogen, and then allylamine (0.07 mL, 0.053 g, 0.927 mmol) and (E)-2phenylvinylboronic acid (0.125 g, 0.847 mmol) were added. The reaction mixture was stirred at room temperature for 40 h. The reaction mixture was partitioned between 5% aqueous NaOH (20 mL) and EtOAc (20 mL). The organic layer was washed with brine $(2 \times 20 \text{ mL})$, dried (MgSO₄), and concentrated in vacuo to give a brown oil. Flash column chromatography (increasing polarity 2-4% MeOH in DCM as eluent) afforded the β -amino alcohol **3b** (0.164 g, 38%, over two steps). $[\alpha]^{24}_{D}$ +7.5° (c 1.08, CHCl₃). ¹H NMR (CDCl₃, 300 MHz): δ 7.66–7.62 (4H, m), 7.42–7.26 (11H, m), 6.50 (1H, d, J = 15.4 Hz), 6.14 (1H, dd, J = 8.8, 15.4 Hz), 5.91 (1H, ddt, J = 5.9, 10.3, 17.0 Hz), 5.20 (1H, d, J = 17.0 Hz), 5.12 (1H, d, J = 10.3 Hz), 3.75 (1H, dt, J = 3.8, 8.5 Hz), 3.67 (2H, t, t)J = 5.9 Hz), 3.39-3.15 (3H, m), 2.40 (2H, br s), 1.88-1.4 (4H, m), 1.01 (9H, s). ¹³C NMR (CDCl₃, 75 MHz): δ 136.3, 135.5, 133.8, 129.5, 128.5, 127.6, 127.2, 126.4, 116.3, 72.4, 64.7, 63.9, 49.5, 29.9, 29.0, 29.8, 19.1. MS (ES+) *m/z* 500 ([M + 1]⁺), HRMS (ES+) found 500.2987, calcd for C₃₂H₄₂NO₂Si 500.2985 ([M + 1]⁺). The enantiomeric purity of this compound was determined to be 93% from ¹⁹F NMR analysis of its Mosher ester (see Supporting Information).

Acknowledgment. We thank the Australian Research Council and the University of Wollongong for financial support.

Supporting Information Available: Full experimental details, characterization data, and NMR assignments for all compounds. Copies of the ¹H and ¹³C NMR spectra of **1a,b, 2a,b, 3a,b, 4–8**, and copies of the ¹H and ¹⁹F NMR spectra of the Mosher esters of **2a,b** and **3a,b** in CDCl₃ solution. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0610661

^{(13) (}a) Mulzer, J.; Dehmlow, H. J. Org. Chem. 1992, 57, 3194–3202.
(b) Casiraghi, G.; Ulgheri, F.; Spanu, P.; Rassu, G.; Pinna, L.; Gasparri, F. G.; Belicchi, F. M.; Pelosi, G. J. Chem. Soc., Perkin Trans. 1 1993, 2991–2997. (c) Naruse, M.; Aoyagi, S.; Kibayashi, C. J. Org. Chem. 1994, 59, 1538–1364.

⁽¹⁴⁾ Yang, Q.; Xiao, W.-J.; Yu, Z. Org. Lett. 2005, 7, 871-874.